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c© SISSA 2009 doi:10.1088/1126-6708/2009/04/018

mailto:drummond@lapp.in2p3.fr
mailto:henn@physik.hu-berlin.de
http://arxiv.org/abs/0808.2475
http://dx.doi.org/10.1088/1126-6708/2009/04/018


J
H
E
P
0
4
(
2
0
0
9
)
0
1
8

Contents

1 Introduction 1

2 Amplitudes and supersymmetric recursion relations 3

3 NMHV tree amplitudes 5

3.1 Inhomogeneous term 6

3.2 5-point example 7

3.3 General solution for NMHV amplitudes 8

4 NNMHV tree amplitudes 9

5 All tree amplitudes 13

6 Symmetries of the amplitudes 22

7 Gluon scattering amplitudes from super-amplitudes 24

8 Conclusions 26

A Collinear limit of the super-amplitudes 27

B Conventional and dual superconformal generators 28

1 Introduction

Gluon scattering amplitudes are known to have many remarkable properties. In a recent

paper [1], it was discovered that in N = 4 SYM, scattering amplitudes exhibit a new,

dual superconformal symmetry. This new symmetry appears in addition to all previously

known symmetries of the amplitudes. It was also shown that this dual superconformal

symmetry can be understood through the AdS/CFT correspondence, where it appears as

a symmetry of the AdS5 × S5 string sigma model [2, 3]. In this paper we will construct

a solution for all tree-level amplitudes in N = 4 SYM and show explicitly how it respects

dual superconformal symmetry.

The first hint at an unexpected simplicity in gluon scattering amplitudes was the

formula for the MHV amplitudes conjectured by Parke and Taylor [4] (and later proved

by Berends and Giele [5]). For amplitudes having generic helicity configurations, Witten

argued that they have remarkable properties in twistor space [6]. This conjecture was

verified for NMHV amplitudes [7, 8], however the explicit formulae [9] for these amplitudes

are rather complicated. Since tree level gluon amplitudes in N = 4 SYM are equal to gluon

amplitudes in any gauge theory, including QCD, it is no restriction to consider amplitudes
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in N = 4 SYM instead. Keeping this in mind and having observed that N = 4 SYM

amplitudes have an additional symmetry, dual superconformal symmetry, it seems natural

to write the amplitudes in a manifestly supersymmetric way. The appropriate on-shell

N = 4 superspace was introduced by Nair [10], who used it to write down the MHV super-

amplitudes. This superspace was employed in [6] to describe amplitudes in super-twistor

space and in [11] to express NMHV amplitudes using a supersymmetric version of the

CSW rules [12]. Employing this superspace will allow us to make the additional symmetry

properties of the amplitudes manifest and hopefully lead to simpler expressions than the

previously available ones. Indeed, it was conjectured [1] and later proved [13] that NMHV

tree level amplitudes written in this superspace have a remarkably simple form, they are

just given by a sum over certain dual superconformal invariants. It seems natural to expect

that one can go beyond NMHV amplitudes and that generic NpMHV amplitudes will have

a relatively simple form when written in superspace. Since these super-amplitudes are not

yet known we compute them in this paper.

The state-of-the-art method for computing tree-level scattering amplitudes in gauge

theory are the BCF/BCFW on-shell recursion relations [14, 15]. Recently, these recursion

relations have been written for N = 4 SYM in on-shell superspace [16–20]. We will use

the form presented in [17–19]. This is precisely the tool we need to study tree-level super-

amplitudes for arbitrary helicity configurations. The supersymmetric recursion relations

have been used very recently to verify that tree-level scattering amplitudes in N = 4 SYM

are covariant under dual superconformal transformations [18].

In this paper, we use the supersymmetric recursion relations to compute tree-level am-

plitudes in N = 4 SYM. As we will see, writing the recursion relations in superspace makes

it significantly simpler to solve them. We use the explicit solutions for NMHV, NNMHV,

and NNNMHV amplitudes as examples to study the general pattern and then we present

a solution for all amplitudes in terms of nested sums. Our result on NMHV amplitudes

confirms the result of [13], while our results for generic non-MHV amplitudes are new.

We then study the symmetries of our solution and show how the conventional su-

perconformal symmetry of N = 4 SYM is realised on the amplitudes. We also study

the dual superconformal symmetry that the tree-level super-amplitudes should exhibit [1].

This symmetry is a generalisation of dual conformal symmetry, which first appeared as a

property of loop integrals in the perturbative expansion of MHV amplitudes [21–23] and

then, in the context of the AdS/CFT correspondence, as the isometry of a T-dual AdS5

in [24, 25] and finally as an anomalous Ward identity for MHV amplitudes [26, 27]. This

last manifestation of dual conformal symmetry is based on a conjectured duality between

MHV amplitudes and Wilson loops [24, 28, 29] which has been confirmed in perturbation

theory up to two loops [26, 27, 30–32]. A review of these developments is given in [33].

The paper is organised as follows. In section 2 we introduce the necessary superspace

definitions and briefly review the extension of the BCF recursion relations to superspace.

In section 3, we show how to solve the supersymmetric recursion relations in the NMHV

case, and in section 4 in the NNMHV case. Based on the previous sections, we give

in section 5 the solution to the supersymmetric relations for the generic non-MHV case.

In section 6 we discuss both the conventional and dual superconformal symmetry of our
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solutions. Section 7 serves to explain how to extract gluon scattering amplitudes from

our super-amplitudes. Section 8 contains our conclusions. There are two appendices. In

appendix A we discuss the behaviour of our results under the collinear limit. In appendix B

we give the generators of the ordinary as well as the dual superconformal algebra.

2 Amplitudes and supersymmetric recursion relations

In this paper, we will be discussing colour-ordered scattering amplitudes. The tree-level

MHV gluon amplitudes mentioned in the introduction are given by [4, 5]1

A(1−, 2+, . . . , j−, . . . , n+) = δ(4)(p)
〈1j〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉 , (2.1)

where p =
∑n

i=1 λα
i λ̃α̇

i is the total momentum and 〈ij〉 = λα
i λj α. In order to shed more

light on gluon scattering amplitudes of arbitrary helicity configurations and make their

symmetries manifest, it is useful to consider scattering amplitudes in N = 4 SYM, which

has many exceptional properties. Using Grassmann variables ηA we can write down a

super-wavefunction

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCǫABCDΓ̄D(p)

+
1

4!
ηAηBηCηDǫABCDG−(p) , (2.2)

which incorporates as its components all on-shell states of N = 4 SYM. Since the N = 4

supermultiplet is PCT self-conjugate, we could equally well have chosen an anti-chiral

representation (see [1, 13] for more explanations). Then we can define super-amplitudes as

An

(

λ, λ̃, η
)

= A (Φ1 . . . Φn) . (2.3)

In this paper we will be discussing exclusively tree-level amplitudes. The N = 4 super-

symmetric version of the MHV tree-level amplitude (2.1) then reads [10]

AMHV
n (λ, λ̃, η) =

δ(4)(p) δ(8)(q)

〈1 2〉〈2 3〉 . . . 〈n 1〉 , (2.4)

where q =
∑n

i=1 λα
i ηA

i . The appearance of δ(8)(q) is dictated by N = 4 supersymmetry,

and can be thought of as imposing super-momentum conservation, just as δ(4)(p) ensures

momentum conservation.

The full tree-level super-amplitude (2.3) contains not just MHV but all possible

NpMHV super-amplitudes and has the factors δ(4)(p) and δ(8)(q) for the same reason. It is

convenient to factor out the MHV tree-level super-amplitude (2.4) and write the remaining

factor as Pn,

An = AMHV
n Pn. (2.5)

The factor Pn has an expansion in the Grassmann parameters η,

Pn = PMHV
n + PNMHV

n + · · · PMHV
n . (2.6)

1In this paper we omit the standard factor of i(2π)4 in the normalisation of the amplitudes.
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Of course PMHV
n = 1 while PNMHV

n has Grassmann degree 4 and the remaining terms

increase in Grassmann degree in units of 4 up to PMHV
n which is of degree 4n − 16.

The super-amplitude AMHV
n contains the pure gluon amplitude (2.1) as a component

in the expansion in the Grassmann parameters ηi,

AMHV
n = (η1)

4 (ηj)
4 A(1−, 2+, . . . , j−, . . . , n+) + · · · , (2.7)

where (η)4 = (1/4!)ǫABCDηAηBηCηD. The full super-amplitude An contains all gluon

amplitudes (with arbitrary total helicity) as well as all amplitudes with fermions and scalars

in N = 4 SYM. The superspace formulation of the amplitudes has the advantage that

supersymmetric Ward identities are automatically satisfied. Another advantage is that, as

was conjectured in [1] and proved in [13], NMHV amplitudes have a particularly simple

form when written in superspace, namely

ANMHV
n = AMHV

n PNMHV
n =

δ(4)(p) δ(8)(q)

〈1 2〉〈2 3〉 . . . 〈n 1〉
∑

1<s<t<n

Rn;st , (2.8)

where Rn;st are dual superconformal invariants whose precise form is given in [1] and will

be given again shortly.

Let us now quickly introduce the necessary information on the BCF on-shell recursion

relations. They express n-point scattering amplitudes in terms of a sum over a product of

scattering amplitudes of fewer points [14, 15]. Schematically, they read

A =
∑

Pi

∑

h

Ah
L(zPi

)
1

P 2
i

A−h
R (zPi

) . (2.9)

In (2.9), zP indicates that in the amplitudes on the r.h.s certain momenta were shifted. The

shift can be chosen in many ways. For our purposes it is convenient to shift two adjacent

legs according to
ˆ̃
λn = λ̃n + zPi

λ̃1 , λ̂1 = λ1 − zPi
λn . (2.10)

Hatted quantities denote the shifted variables. This shift, called an |n1〉 shift, is depicted

in figure 1. Note that the amplitudes Ah
L(zPi

),A−h
R (zPi

) are on-shell. Indeed, the shift

parameter zP must be chosen such that this is the case, which amounts to saying that the

shifted intermediate momentum P̂i = −(λ̂1λ̃1 +
∑i−1

j=2 λj λ̃j) is on-shell, i.e.

(P̂i)
2 =



−
i−1
∑

j=1

λj λ̃j + zPi
λnλ̃1





2

= 0 . (2.11)

Note also that the propagator 1/P 2
i in (2.9) is evaluated for unshifted kinematics.

We will use the supersymmetric version of the BCF recursion relations of [17–19]. This

amounts to replacing the sum over intermediate states by a superspace integral, and the

on-shell amplitudes by super-amplitudes, i.e.

A =
∑

Pi

∫

d4ηPi
AL(zPi

)
1

P 2
i

AR(zP ) . (2.12)
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x2 , θ2

xi , θi
xi−1 , θi−1

xn , θn

r.h.s. of on-shell recursion relation dual variables

Figure 1. Illustration of the r.h.s of the on-shell recursion relations (2.9), (2.12). The picture on

the right illustrates the transition to dual variables.

The validity of the supersymmetric equations can be justified by relating the z → ∞
behaviour of the shifted super-amplitudes A(z) to the known behaviour of component

amplitudes [15] using supersymmetry [17–19].

For the supersymmetric equations, supersymmetry requires that in addition to (2.10)

we also have

η̂n = ηn + zPi
η1 . (2.13)

In the following sections it will be very useful to use the dual variables [21]

λiλ̃i = xi − xi+1 . (2.14)

As was already mentioned, these have a natural generalisation to dual superspace [1], i.e.

λiηi = θi − θi+1 . (2.15)

Following [18], in the supersymmetric recursion relations only the following dual variables

get shifted,

x̂1 = x1 − zPi
λnλ̃1 , θ̂1 = θ1 − zPi

λnη1 . (2.16)

See figure 1. The fact that all other dual variables remain inert under the shift will prove

useful when solving the supersymmetric recursion relations.

3 NMHV tree amplitudes

Here we show that it is straightforward to obtain all NMHV tree amplitudes from the

supersymmetric recursion relation (2.12) and knowing the MHV super-amplitudes.

Apart from the n-point MHV super-amplitude (2.4) we need the 3-point MHV ampli-

tude, which can be readily obtained from (2.4) for n = 3 by a Grassmann Fourier transform

and complex conjugation,

AMHV
3 (λ, λ̃, η) = δ(4)(p)

δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
. (3.1)

The form of the three-point MHV amplitude has appeared already in [13, 17–19]. NMHV

super-amplitudes have Grassmann degree 12. Looking at (2.12) we see that there is a

– 5 –
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N
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A B

∑n−1
i=4

Figure 2. The two contributions to the supersymmetric recursion relation for NMHV amplitudes.

We call term B inhomogeneous and A homogeneous. B can be easily computed since it is built

from MHV amplitudes only. 1̂ means that λ1 is shifted, and n̄ means that λ̃n is shifted.

Grassmann integration, which means that the Grassmann degree of the amplitudes on the

r.h.s. of (2.12) must add up to 16. This is only possible in two ways, 4 + 12 and 8 + 8,

which corresponds to taking MHV3 + NMHV and MHV + MHV amplitudes for AL,AR,

respectively. It is convenient to choose a shift of two neighbouring points, e.g. a [n1〉 shift.

Then the supersymmetric recursion relation for ANMHV
n reads

ANMHV
n =

∫

d4P

P 2

∫

d4η
P̂
AMHV

3 (zP )ANMHV
n−1 (zP )

+
n−1
∑

i=4

∫

d4Pi

P 2
i

∫

d4η
P̂i
AMHV

i (zPi
)AMHV

n−i+2(zPi
)

≡A + B . (3.2)

The two terms in (3.2) are depicted in figure 2.

Note that the shifted lines must be on opposite sides of the exchanged line. Note also

that the leg n with the anti-holomorphic shift cannot connect to the MHV3 amplitude since

this would not be allowed by the kinematics. Similarly, an MHVi amplitude containing

the leg 1 with the holomorphic shift must have at least four legs, which explains the range

of i in (3.2).

3.1 Inhomogeneous term

The inhomogeneous term in the recursion relation (3.2) for NMHV amplitudes (correspond-

ing to figure 2B) can be readily calculated since it is built entirely from the known MHV

amplitudes, see (2.4).

By writing, for example, the Grassmann delta function coming from AMHV
i (zP ) in the

following way,

δ(8)



λ̂1η1+
i−1
∑

j=2

λjηj−λ
P̂i

η
P̂i



=〈1̂P̂i〉4δ(4)





i−1
∑

j=2

〈1̂j〉
〈1̂P̂i〉

ηj−η
P̂i



δ(4)



η1+
i−1
∑

j=2

〈jP̂i〉
〈1̂P̂i〉

ηj



 ,

(3.3)

the integration over η
P̂i

can be carried out straightforwardly. In this way, we obtain the

following contribution to the n-point NMHV amplitude:

B =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
n−1
∑

i=4

Rn;2 i . (3.4)
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Here Rr;st is a dual superconformal invariant introduced in [1],

Rr;st =
〈s s − 1〉〈t t − 1〉δ(4)(Ξr;st)

x2
st〈r|xrsxst|t〉〈r|xrsxst|t − 1〉〈r|xrtxts|s〉〈r|xrtxts|s − 1〉 . (3.5)

The Grassmann odd quantity Ξr;st is given by

Ξr;st = 〈r|xrsxst|θtr〉 + 〈r|xrtxts|θsr〉 . (3.6)

Here we used the dual variables xi and θi defined by (2.14) and (2.15).

In the following we will often deal with the quantity Ξn;st for 1 < s < t < n. It is

instructive to switch from the dual θi in (3.6) to the ηi,

Ξn;st = 〈n|
[

xnsxst

n−1
∑

i=t

|i〉ηi + xntxts

n−1
∑

i=s

|i〉ηi

]

, (3.7)

to see that Ξn;st is independent of ηn and η1. Alternatively, using the δ(8)(q) present in all

physical amplitudes to rewrite the sums we can obtain

δ(8)(q) Ξn;st = −δ(8)(q) 〈n|
[

xnsxst

t−1
∑

i=1

|i〉ηi + xntxts

s−1
∑

i=1

|i〉ηi

]

, (3.8)

such that the only dependence on ηn−1 and ηn on the l.h.s. of (3.8) is contained in

δ(8)(q). These facts will be useful in the following sections when carrying out superspace

integrations.

Moreover, it is useful to realise that terms like 〈r|xrsxst|t〉 in (3.5) and similar terms

in (3.6) can always be written as

〈r|xrsxst|t〉 = 〈r|xr+1 sxst|t〉 , (3.9)

such that it is clear that they only depend explicitly on λr, but not on λ̃r.

3.2 5-point example

In [18], the supersymmetric recursion relations were examined for the example of the

five-point MHV amplitude. We will also examine this example here as it is the first

example of an NMHV amplitude. For five points, NMHV5 = MHV5, and therefore we

could have obtained the NMHV5 amplitude from a Grassmann Fourier transform of the

MHV5 amplitude [13].

We immediately see that only the second term in (3.2) contributes, because there

is no four-point amplitude of Grassmann degree 12. Hence for five points, the complete

amplitude is given by (3.4), i.e.

ANMHV
5 =

δ(4)(p) δ(8)(q)
∏5

j=1〈j j + 1〉
R5;2 4 . (3.10)

We remark that the invariant R5;2,4 can be further simplified, but this is a special feature

of the n = 5 case.

– 7 –
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Another remark is that the super-amplitude must have cyclic symmetry. This allows

us to conclude that

δ(8)(q)R5;2 4 = δ(8)(q)R1;3 5 = δ(8)(q)R2;4 1 = δ(8)(q)R3;5 2 = δ(8)(q)R4;1 3 . (3.11)

This is just the first example of the more general identity for n points, given in [13], where

δ(8)(q)
∑

s,t

Rr;st = δ(8)(q)
∑

s,t

Rr′;st , (3.12)

where the sum goes over all values of s, t such that r, s, t (or r′, s, t) are ordered cyclically

with r and s (or r′ and s) and s and t separated by at least two.

3.3 General solution for NMHV amplitudes

It can be seen that there is a simple pattern to how the n-point solution is generated from

the (n − 1)-point one. Let us check that the formula

ANMHV
n = AMHV

n PNMHV
n =

δ(4)(p) δ(8)(q)

〈1 2〉〈2 3〉 . . . 〈n 1〉
∑

2≤s<t≤n−1

Rn;st , (3.13)

indeed solves the supersymmetric recursion relation (3.3). In this formula we are assuming

that s and t are separated by at least two. Comparing to (3.10) we see that for n = 5 the

form (3.13) is correct.

We now proceed to prove (3.13) by induction. Let us assume that the form (3.13) is

valid for n− 1 points. Then it follows from the cyclicity of super-amplitudes that (3.12) is

also true for n − 1 points. Now, we notice that ANMHV
n−1 (zP ) in the homogeneous term, A

on the r.h.s. of (3.2), only involves the quantities Rn−1;st where the first subscript is always

equal to n− 1. Cyclic symmetry allows us to insert ANMHV
n−1 (zP ) into (3.2) in our favourite

orientation. It is convenient to insert it such that the legs {1, 2, 3, . . . , n−1} of ANMHV
n−1 (zP )

are identified with the legs {P̂ , 3, 4, . . . , n} in the recursion relation (see figure 2),

A =

∫

d4P

P 2

∫

d4η
P̂
AMHV

3 (zP )AMHV
n−1 Pn−1(P̂ , 3, . . . , n̄). (3.14)

After carrying out this change of labels in ANMHV
n−1 (zP ) is is clear from equations (3.7)

and (3.9) that the obtained Rn;st does not depend on η
P̂
. Indeed the range of η-dependence

is only {η3, . . . ηn−1}. When the lower summation variable attains its minimum value, there

is an explicit dependence on the spinor 〈P̂ |. However, due to the three-point kinematics,

this spinor is proportional to 〈2| and since it appears homogeneously in R with degree zero

it can simply be replaced by 〈2|. Thus we find

A =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
∑

3≤s<t≤n−1

Rn;st . (3.15)

We see that (3.4) is just the missing first term (for s = 2) to complete (3.15) to the

ansatz (3.13) for n points, i.e.

A + B = ANMHV
n =

δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
∑

2≤s<t≤n−1

Rn;st . (3.16)

– 8 –
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Figure 3. The three contributions to the supersymmetric recursion relation for NNMHV ampli-

tudes.

This completes the inductive proof. Cyclicity of the super-amplitude justifies the general

identity (3.12). To prepare for the notation that we use in section 5, we will rewrite

the formula for NMHV amplitudes with different labels and using PNMHV
n instead of

ANMHV
n = AMHV

n PNMHV
n ,

PNMHV
n =

∑

2≤a1,b1≤n−1

Rn;a1b1 . (3.17)

The reason is that in the following sections we will derive a formula for the full Pn defined

in (2.5) and we will encounter generalisations of the invariant Rn;a1b1 with multiple labels.

Thus we see that the result (3.13) which was conjectured in [1] and derived in [13]

follows very naturally from the recursion relations. Of course it should be equivalent to

the result found in [11] using a supersymmetrised version of the CSW rules [12].

4 NNMHV tree amplitudes

Before we generalise to all tree-level super-amplitudes, it is useful to look first at the next

case, namely NNMHV amplitudes. In examining the recursion relation in this case we will

find new features which will help us find the solution for the full super-amplitude in the

next section.

The recursive relation for NNMHV amplitudes reads

ANNMHV
n =

∫

d4P

P 2

∫

d4η
P̂
AMHV

3 (zP )ANNMHV
n−1 (zP )

+
n−3
∑

i=4

∫

d4Pi

P 2
i

∫

d4η
P̂i
AMHV

i (zPi
)ANMHV

n−i+2 (zPi
)

+

n−1
∑

i=5

∫

d4Pi

P 2
i

∫

d4η
P̂i
ANMHV

i (zPi
)AMHV

n−i+2(zPi
) ≡ A + B1 + B2 . (4.1)

It is very similar to the recursion relation for NMHV amplitudes, and as we will show

presently, it can be solved in a similarly straightforward manner.

Before we derive the solution to (4.1), it is helpful to introduce some new notation.

Firstly we will introduce generalisations of the R-invariant which we used to express the

NMHV amplitudes. The new quantities have many pairs of labels and are given by

Rn;b1a1;b2a2;...;brar ;ab =
〈a a − 1〉〈b b − 1〉δ(4)(〈ξ|xaraxab|θbar

〉 + 〈ξ|xarbxba|θaar〉)
x2

ab〈ξ|xaraxab|b〉〈ξ|xaraxab|b−1〉〈ξ|xarbxba|a〉〈ξ|xarbxba|a−1〉 , (4.2)
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where the chiral spinor 〈ξ| is given by

〈ξ| = 〈n|xnb1xb1a1xa1b2xb2a2 . . . xbrar
. (4.3)

In the case where there is only one pair of labels ab after the initial label n, (4.2) is just

the R-invariant (3.5) we have already seen appearing in the NMHV amplitudes. The cases

where there is more than one pair are generalisations. The new quantities Rn;b1a1;...;brar ;ab

are invariant under dual conformal symmetry, but not (except for the case Rn;ab) under dual

superconformal symmetry. However they will always appear in the amplitude together with

additional factors which will combine with them to make dual superconformal invariants.

We will explore this point in more detail in section 6.

We also need to introduce a second piece of notation. Just as we have already seen in

the NMHV case, the R-invariants will always appear in the amplitude with a summation

over the last pair of labels (the summation will always take place over the region where a

and b are separated by at least two, a < b − 1), i.e. in the form,

∑

L≤a<b≤U

Rn;b1a1;...;brar ;ab . (4.4)

We will write superscripts on the R-invariants to indicate special behaviour for the bound-

ary terms when a = L or b = U . Specifically we write

∑

L≤a<b≤U

R
l1...lp;u1...uq

n;b1a1;...;brar ;ab . (4.5)

This notation means the following. For the terms in the sum where a = L we replace the

explicit dependence on 〈L − 1| in (4.2) in the following way,

〈L − 1| −→ 〈n|xnl1xl1l2xl2l3 . . . xlp−1lp . (4.6)

Similarly, for the terms in the sum where b = U we replace the explicit dependence on 〈U |
in (4.2) in the following way,

〈U | −→ 〈n|xnu1xu1u2xu2u3 . . . xuq−1uq . (4.7)

Of course there is one term in the sum where a = L and b = U where both replacements

occur. When no replacement is to be made on one of the boundaries we will write the

superscript 0.

Using this notation we will now state the result for all NNMHV amplitudes. As usual

we have

ANNMHV
n = AMHV

n PNNMHV
n . (4.8)

Then the factor PNNMHV
n is given by

PNNMHV
n =

∑

2≤a1,b1≤n−1

R0;0
n;a1b1

[

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2b2≤n−1

Ra1b1;0
n;a2b2

]

. (4.9)
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The superscripts 0; 0 on the outer R-invariant R0;0
n;a1,b1

simply mean that nothing special

happens at the boundaries 2 and n− 1, as is also the case in formula (3.17) for the NMHV

amplitudes. Thus this expression differs from the formula for the NMHV amplitudes in

that the factor in the square brackets is not 1 but is itself a sum over R-invariants. For

the sums of R-invariants in the square brackets the superscripts denote the fact that there

are non-trivial boundary effects (at the upper boundary for the first term and the lower

boundary for the second).

Let us now demonstrate the validity of formula (4.9). The first step is to calculate the

two inhomogeneous terms in the recursion relation, labelled B1 and B2 in figure 3. We

start with the calculation of B1 which corresponds to the second term on the r.h.s. of the

recursion relation (4.1). This term is very similar to the inhomogeneous term B that we

encountered for the NMHV amplitudes in section 3. The difference from that case is that

for B1 we have an additional factor of PNMHV,

B1 =
n−3
∑

i=4

∫

d4Pi

P 2
i

∫

d4η
P̂i
AMHV

i (zPi
)AMHV

n−i+2(zPi
)PNMHV

n−i+2 (zPi
) . (4.10)

Thanks to the cyclic symmetry of the amplitudes, we have the freedom to insert the

NMHV factor in our preferred orientation. We will choose to insert it so that the legs

{1, 2, . . . , n−i+2} of the subamplitude correspond to the legs {P̂ , i, . . . , n̄} in the recursion

relation, as shown in figure 3. With this choice we find that the R-invariants appearing in

the factor of PNMHV
n−i+2 (see equations (3.17) and (3.5)) do not depend on η

P̂
and are therefore

inert under the Grassmann integral. The integration is therefore identical to that which

we performed in the calculation of B in subsection 3.1 and we obtain a result very similar

to equation (3.4),

B1 =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
n−1
∑

i=4

Rn;2 iPNMHV
n−i+2 (P̂ , . . . , n̄) . (4.11)

Now, if we compare the factor PNMHV
n−i+2 (P̂ , . . . , n̄) against the general formula for NMHV

amplitudes (3.17) and the definition of the R-invariants (3.5), we see that we can write it as

PNMHV
n−i+2 (P̂ , . . . , n̄) =

∑

i≤s,t≤n̄−1

Rn̄;st(P̂ , . . . , n̄), (4.12)

where the notation indicates that we must remember that legs associated to this factor

form the ordered set {P̂ , . . . , n̄}. Thus when s = i the explicit dependence of R on 〈s − 1|
becomes a dependence on 〈P̂ |. The spinor 〈P̂ | appears once in the numerator and once

in the denominator of the relevant R-invariants. For these boundary terms in the sum we

will write the dependence on P̂ in the following way. First we multiply both the numerator

and denominator by 〈n1〉[1P̂ ]. Then we can see that for any factor which has the spinor

〈P̂ | in it we can write

〈n1〉[1P̂ ]〈P̂ | . . .=〈n1〉[1|P . . .=〈n1〉[1|x1i . . .=〈n1〉[1|x2i . . .=〈n|x12x2i . . .=〈n|xn2x2i . . .

(4.13)
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So for the boundary terms s = i we have a modification of the R-invariant where the

explicit dependence on the spinor 〈i − 1| is replaced in the following way,

〈i − 1| −→ 〈n|xn2x2i . (4.14)

The remaining terms in the sum (4.12) are just unmodified R-invariants. This is why

we introduced the idea of superscripts on the R-invariants. The replacement (4.14) is

an example of the lower limit replacement (4.6). The total effect is summarised by the

following formula for B1,

B1 =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
n−1
∑

i=4

Rn;2 i

∑

i≤s,t≤n−1

R2i;0
n;st . (4.15)

Now let us address the second inhomogeneous term B2. This is similar to the term B1

which we already calculated, but this time the factor of PNMHV
i appears in the left factor

instead of the right factor,

B2 =
n−3
∑

i=4

∫

d4Pi

P 2
i

∫

d4η
P̂i
AMHV

i (zPi
)PNMHV

i (zPi
)AMHV

n−i+2(zPi
). (4.16)

Again we can choose the legs of the left subamplitude so that the R-invariants contained

in PNMHV
i are inert under the Grassmann integration. One way to do this is to have the

legs {1, . . . , i} match up with legs {2, . . . ,−P̂ , 1̂} in the recursion relation. In much the

same way as for B1 this allows us to write

B2 =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
n−1
∑

i=4

Rn;2 i

∑

3≤s,t≤P̂

R1̂;st(2, . . . ,−P̂ , 1̂) , (4.17)

where again the notation is to remind us that the legs associated with the R-invariants

under the second sum form the ordered set {2, . . . ,−P̂ , 1̂}. Thus when t = P̂ we will

have an explicit dependence on the spinor P̂ in the R-invariants. Using exactly the same

reasoning as in (4.13) above we see that the resulting R-invariants will have the upper

boundary replacement,

〈i| −→ 〈n|xn2x2i . (4.18)

In addition, there is a new feature in the calculation of B2. This arises from the fact that

the last leg in the subamplitude is 1̂ and not n. Therefore the spinor 〈1̂| appears four

times in the numerator and four times in the denominator of every R-invariant. We can

deal with this by writing the explicit expression for 〈1̂|,

〈1̂| = 〈1| − zPi
〈n| = 〈1| − x2

1i

〈n|x1i|1]
〈n| =

〈n|x1i(x12 − x1i)

〈n|x1i|1]
=

〈n|xnixi2

〈n|x1i|1]
. (4.19)

Since 〈1̂| appears homogeneously in the R-invariants, the denominator 〈n|x1i|1] in (4.19)

drops out and we effectively have the following replacement in the R-invariants,

〈n| −→ 〈n|xnixi2 . (4.20)
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Taking into account both effects (4.18) and (4.20) we find that B2 is given by the

following formula,

B2 =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
n−1
∑

i=4

Rn;2 i

∑

3≤s,t≤i

R0;2i
n;i2;st . (4.21)

The upper limit replacement (4.18) is responsible for the non-trivial right-superscript,

while the extension of the spinor 〈n| in (4.20) is responsible for the fact that we have the

first example of the generalised R-invariants, defined in equation (4.2).

Now we are in a position to justify the formula (4.9) for the NNMHV amplitudes. We

will proceed by induction and assume that (4.9) is true for (n− 1)-point amplitudes. Then

we can treat the homogeneous term (labelled A in figure 3) in exactly the same way as for

NMHV amplitudes. Again we will insert ANNMHV
n−1 (zP ) so that the legs {1, . . . , n − 1} of

the subamplitude coincide with legs {P̂ , 3, . . . , n̄} of the recursion relation,

A =

∫

d4P

P 2

∫

d4η
P̂
AMHV

3 (zP )AMHV
n−1 (zP )Pn−1(P̂ , 3, . . . , n̄). (4.22)

With this choice we find all R-invariants are again inert under the Grassmann integral.

To see this, we first note that the outer R-invariant in Pn−1(P̂ , 3, . . . , n̄) (see (4.9)) is the

same as in the NMHV case. We have already seen in subsection 3.3 that this does not

depend on η
P̂

and so is inert under the Grassmann integral. The other R-invariants in

Pn−1(P̂ , 3, . . . , n̄) (which come from the terms in square brackets in (4.9)) also do not

depend on η
P̂
. The first term in the square brackets depends on {η3, . . . , ηn−2}, as can be

seen from equations (4.2) and (2.15), while the second depends on {η3, . . . , ηn−1} just like

the outer R-invariant.

Just as for the case of the NMHV amplitudes, when the outermost lower summation

variable (which corresponds to a1 in equation (4.9)) reaches its lowest value, there is an

explicit dependence on the spinor 〈P̂ |. However, as in the NMHV case, this can simply

be replaced by 〈2| due to the three-point kinematics. Thus we obtain the following simple

result for A,

A =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
∑

3≤a1,b1≤n−1

R0;0
n;a1b1

[

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2b2≤n−1

Ra1b1;0
n;a2b2

]

. (4.23)

Combining the results from A, B1 and B2 we find

A + B1 + B2 =
δ(4)(p) δ(8)(q)
∏n

j=1〈j j + 1〉
∑

2≤a1,b1≤n−1

R0;0
n;a1b1

[

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2b2≤n−1

Ra1b1;0
n;a2b2

]

= AMHV
n PNNMHV

n . (4.24)

We know formula (4.9) is correct for the six-point amplitudes, since the inhomogeneous

terms are the only contributions to this case. Therefore we have completed the inductive

justification of the result (4.9) for the NNMHV amplitudes.

5 All tree amplitudes

It is simple to continue the analysis of the preceding sections to N3MHV, N4MHV

amplitudes and so on. The supersymmetric recursion relation for a generic NpMHV
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amplitude reads

ANpMHV
n =

∫

d4P

P 2

∫

d4η
P̂
AMHV

3 (zP )ANpMHV
n−1 (zP )

+

p−1
∑

m=0

∑

i

∫

d4Pi

P 2
i

∫

d4η
P̂i
ANmMHV

i (zPi
)AN(p−m−1)MHV

n−i+2 (zPi
) . (5.1)

At each stage one obtains the universal prefactor AMHV
n while the R-invariants from the

right-hand factor in the second line are left unchanged and those from the left-hand factor

acquire an additional extension, just as in the case of the NNMHV amplitudes. As before,

one must carefully take into account the behaviour of the boundary terms in the sums.

For example, we find that the N3MHV amplitudes are given by the formula,

PN3MHV
n =

∑

2≤a1,b1≤n−1

Rn;a1b1

[

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

(

∑

a1+1≤a3,b3≤b2

R0;b1a1a2b2
n;b1a1;b2a2;a3b3

+
∑

b2≤a3,b3≤b1

Rb1a1a2b2;a1b1
n;b1a1;a3b3

)

+
∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

∑

b1≤a3,b3≤n−1

Ra1b1;0
n;a3b3

+
∑

b1≤a2,b2≤n−1

Ra1b1;0
n;a2b2

(

∑

a2+1≤a3,b3≤b2

R0;a2b2
n;b2a2;a3b3

+
∑

b2≤a3,b3≤n−1

Ra2b2;0
n;a3b3

)]

.

(5.2)

If we take the terms in the outermost sum where a1 = 2 then the three lines corre-

spond to the three different inhomogeneous terms in the recursion relation ANNMHV
L AMHV

R ,

ANMHV
L ANMHV

R and AMHV
L ANNMHV

R . As before, the superscripts on the R-invariants indi-

cate the lower and upper limit replacements. The formula (5.2) can be justified by induc-

tion, just as we saw in the cases of the NMHV and NNMHV amplitudes. We will not give

the argument here because in this section we will give an inductive argument which proves

a general formula for the whole super-amplitude (i.e. for all NpMHV amplitudes for all p).

It is helpful to notice that the first and second lines of (5.2) can be combined so that

we have

PN3MHV
n =

∑

2≤a1,b1≤n−1

Rn;a1b1

[

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

(

∑

a2+1≤a3,b3≤b2

R0;b1a1a2b2
n;b1a1;b2a2;a3b3

+
∑

b2≤a3,b3≤b1

Rb1a1a2b2;a1b1
n;b1a1;a3b3

+
∑

b1≤a3,b3≤n−1

Ra1b1;0
n;a3b3

)

+
∑

b1≤a2,b2≤n−1

Ra1b1;0
n;a2b2

(

∑

a2+1≤a3,b3≤b2

R0;a2b2
n;b2a2;a3b3

+
∑

b2≤a3,b3≤n−1

Ra2b2;0
n;a3b3

)]

.

(5.3)

The reason we group the terms in this way is that it fits very naturally, together with

formulae (3.17) and (4.9) for the NMHV and NNMHV cases, into a general pattern which

we will now describe.
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1

a1b1

a2b2

a3b3 a3b3

b1a1; a2b2

b2a2; a3b3b1a1; a3b3b1a1; b2a2; a3b3

2 n − 1

n − 1

n − 1n − 1

a1 + 1

a2 + 1a2 + 1 b1

b1

b2b2

Figure 4. Graphical representation of the formula for tree-level amplitudes in N = 4 SYM.

In the remainder of this section we will prove a general formula for all tree-level am-

plitudes in N = 4 super Yang-Mills. First we must state the result. In order to do so we

need to introduce a diagrammatic way of organising the general formula. Then we will go

on to prove the formula by induction.

We illustrate the full n-point super-amplitude in figure 4 as a tree diagram, where

the vertices correspond to the different R-invariants which appear. We consider a rooted

tree, with the top vertex (the root) denoted by 1. The root has a single descendant vertex

with labels a1, b1 and the tree is completed by passing from each vertex to a number of

descendant vertices, as described in figure 5. We will enumerate the rows by 0, 1, 2, 3, . . .

with 0 corresponding to the root. For an n-point super-amplitude (with n ≥ 4) only the

rows up to row n− 4 in the tree will contribute to the amplitude.2 The rule for completing

the tree as given in figure 5 can be easily seen to imply that the number of vertices in row

p is the Catalan number C(p) = (2p)!/(p!(p + 1)!).

Each vertex in the tree corresponds to an R-invariant with first label n and the remain-

ing labels corresponding to those written in the vertex. For example, the first descendant

vertex corresponds to the invariant Rn;a1b1 which we already saw appearing from the NMHV

level. The next descendant vertices correspond to Rn;b1a1;a2b2 (which appears for the first

time at NNMHV level) and Rn;a2b2 , etc.

We consider vertical paths in the tree, starting from the root vertex at the top of

figure 4. To each path we associate the product of the R-invariants (vertices) visited by

the path, with a nested summation over all labels. The last pair of labels in a given vertex

correspond to the ones which are summed first, i.e. the ones of the inner-most sum. In row

p they are denoted by ap, bp. We always take the convention that ap + 2 ≤ bp, which is

needed for the corresponding R-invariant to be well-defined.

The lower and upper limits for the summation over the pair of labels ap, bp are noted

2The three-point MHV amplitude is a special case where only the root vertex contributes.
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to the left and right of the line above each vertex in row p. For example, the labels a1 and

b1 of Rn;a1,b1 , associated to the first descendant vertex, are to be summed over the region

2 ≤ a1, b1 ≤ n − 1, as always with the convention that a1 + 2 ≤ b1. The labels a2 and b2

on the R-invariants associated to the next descendant vertices are summed over the region

a1 + 1 ≤ a2, b2 ≤ b1 for the vertex on the left, and the region b1 ≤ a2, b2 ≤ n − 1 for the

vertex on the right, in both cases with the condition a2 + 2 ≤ b2.

As we have seen already in the case of the NNMHV amplitudes, sometimes the R-

invariants need to be modified when the summation labels reach their limiting lower or

upper values. We deal with this by writing superscripts on the corresponding R-invariants,

as we described in equations (4.5), (4.6), (4.7). We will illustrate how to obtain the su-

perscripts on each R-invariant by referring to a general cluster of vertices in row p with a

common parent vertex in row p − 1, as shown in figure 5. Firstly, the left superscript of

the left-most vertex in the cluster and the right superscript of the right-most vertex are

both 0, i.e. they indicate no replacements at these boundaries. Then for the rest, the left

superscript associated to a given vertex coincides with the right superscript associated to

the vertex to its left. Therefore we need only specify the right superscripts. These are

given by taking the labels in the vertex, deleting the final pair ap, bp and then reversing

the order of the last pair which remain. For example, the vertex second from the left in

figure 5 corresponds to the following sum,
∑

bp−1≤apbp≤vr

R
v1u1...vrurap−1bp−1;v1u1...vr−1ur−1urvr

n;v1u1;...;vrur ;apbp
. (5.4)

The right superscript on the R-invariant is determined by taking the labels in the vertex,

v1u1, . . . , vrur, apbp, deleting the final pair apbp, and then reversing the order of the final

two which remain, namely vrur. The left superscript coincides with the right superscript of

the vertex to its left in figure 5, and so can be obtained by performing the same operation

on the labels of that vertex.

The formula for the full super-amplitude An = AMHV
n Pn is given by the sum over all

vertical paths of any length, starting from the root,

Pn =
∑

vertical paths in figure 4. (5.5)

Let us now see how the formula (5.5) works for the first few cases. Firstly there is one

path of length zero, where we start at the root (row zero) and do not go anywhere. The

value of this path is simply 1 and it corresponds to the MHV amplitudes,

PMHV
n = 1 . (5.6)

There is one path of length one, where we start at the root and go one step to its unique

descendant. This path gives us 1 from the root, multiplied by Rn;a1b1 from the descendant

vertex, summed over a1, b1 with lower limit 2 and upper limit n−1. There are no boundary

replacements in the sum since there is only one R-invariant in the relevant cluster and so

both its left and right superscripts are 0. So we obtain for the NMHV amplitudes,

PNMHV
n =

∑

2≤a1,b1≤n−1

R0;0
n;a1b1

=
∑

2≤a1b1≤n−1

Rn;a1,b1 , (5.7)
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v1u1; . . . vrur; ap−1bp−1

v1u1; . . . vrur; bp−1ap−1; apbp v1u1; . . . vrur; apbp apbp

ap−1 + 1 bp−1 vr v1 n − 1. . .

. . .

Figure 5. The rule for going from line p − 1 to line p (for p > 1) in figure 4. For every vertex in

line p− 1 of the form given at the top of the diagram, there are r + 2 vertices in the lower line (line

p). The labels in these vertices start with v1u1; . . . vrur; bp−1ap−1; apbp and they get sequentially

shorter, with each step to the right removing the pair of labels adjacent to the last pair ap, bp until

only the last pair is left. The summation limits between each line are also derived from the labels

of the vertex above. The right superscripts associated to each vertex are obtained by deleting the

final pair of labels apbp and reversing the order the last pair which remain. The left superscript of

a given vertex coincides with the right superscript of the vertex to its left.

which agrees with eq. (3.17).

There are two paths of length two. The first corresponds to descending from the

root by one step and then descending once more to the left in figure 4. For this path

we obtain 1 multiplied by Rn;a1b1 multiplied by Rn;b1a1;a2b2 with the limits for the outer

sum over a1, b1 being the same as for the NMHV case above, while the inner sum, which

is over a2, b2, has lower limit a1 + 1 and upper limit b1. The second path of length two

corresponds to descending to the right instead of to the left. Doing so we obtain the product

1 × Rn;a1b1 × Rn;a2b2 with summation limits in the outer sum as before and in the inner

sum being b1 ≤ a2, b2 ≤ n − 1.

The superscripts on the factors Rn;a1b1 are trivial as we just saw when looking at paths

of length one. To obtain the superscripts on the other R-invariants, we recall that the left

superscript of the left-most vertex in row 2 of figure 4 (corresponding to Rn;b1a1;a2b2) and

also the right superscript of the right-most vertex (corresponding to Rn;a2b2) are 0. There

is one non-trivial right superscript, that of Rn;b1a1;a2b2 . It is obtained by deleting the final

pair of indices a2b2 and reversing the order of the last pair which remains (which in this case

is the pair b1a1). Thus we obtain R0;a1b1
n;b1a1;a2b2

. The left superscript of the other invariant is

the same and so we obtain Ra1b1;0
n;a2b2

.

Adding the two paths we obtain for the NNMHV amplitudes

PNNMHV
n =

∑

2≤a1,b1≤n−1

R0;0
n;a1b1

(

∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2,b2≤n−1

Ra1b1;0
n;a2b2

)

, (5.8)

which agrees with eq. (4.9).

Continuing, we find five paths of length three. Applying the rules for writing the sums

over R-invariants and specifying their superscripts we find they correspond precisely to

the five terms in the expression (5.3) for the N3MHV amplitudes. Generically, since the

number of vertices in row p of the tree in figure 4 is the Catalan number C(p), we find C(p)
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. . .. .
.. . .

1̂1̂
2

2 3

n̄n̄

P̂ P̂i

i − 1 i

∑n−1
i=4

Figure 6. The two contributions to the r.h.s. of the supersymmetric recursion relation for the full

super-amplitudes. We call the first term the linear term and the second term the quadratic term.

As before 1̂ means that λ1 is shifted, and n̄ means that λ̃n is shifted.

terms in the expression for the NpMHV amplitudes. Finally, by considering the sum of all

vertical paths of any length, starting from the root, we obtain the sum of all amplitudes,

Pn = PMHV
n + PNMHV

n + PNNMHV
n + · · · + PMHV

n . (5.9)

The sum terminates (as it should) because, for a given value of n, there is maximum number

of possible nestings beyond which all sums collapse to zero. This means that only paths

up to length n − 4 contribute and the longest paths correspond to the MHV amplitudes.

This completes the statement of the result for all tree-level amplitudes.

We will now prove the validity of formula (5.5), i.e. that all tree amplitudes are indeed

given by summing vertical paths in the tree diagram figure 4. As usual we will proceed

by induction and assume that the formula is correct for (n − 1)-point amplitudes. The

recursion relation for the full superamplitude An is illustrated in figure 6. All vertices

except the MHV3 vertex are full super-amplitudes. Specifically the relation reads

An =

∫

d4P

P 2

∫

dηPAMHV
3 (zP )An−1(zP ) +

n−1
∑

i=4

∫

d4Pi

P 2
i

∫

dηPi
Ai(zPi

)An−i+2(zPi
). (5.10)

We will call the first term on the r.h.s. side the linear term because it is linear in the full

super-amplitude A. Similarly we call the second term the quadratic term because there

are two factors of A for each term in the sum over i.

We will introduce Pn into (5.10) in the usual way, An = AMHV
n Pn. As in the particular

cases of NMHV and NNMHV amplitudes, it is useful to insert the subamplitudes in this

expression in our favourite orientations. We will choose the same orientations that we chose

in those cases, i.e. a left factor will depend on the ordered set {2, . . . ,−P̂ , 1̂} and a right

factor on the ordered set {P̂ , . . . , n̄}. With this choice the recursion relation (5.10) reads

AMHV
n Pn =

∫

d4P

P 2

∫

dηPAMHV
3 (zP )AMHV

n−1 Pn−1(P̂ , 3, . . . , n̄)

+

n−1
∑

i=4

∫

d4Pi

P 2
i

∫

dηPi
AMHV

i Pi(2, . . . ,−P̂i, 1̂)AMHV
n−i+2Pn−i+2(P̂i, i, . . . , n̄). (5.11)

The reason for making this particular choice of orientations for the subamplitudes is the

same as in the NMHV and NNMHV cases; the P factors are all inert under the Grassmann
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2 b1

a2b2

a3b3

b1 2; a2b2

Figure 7. Graphical representation of the formula for the contributions missing from the linear term

in the recursion relation. The variable b1 is understood to be summed over the range 4 ≤ b1 ≤ n−1.

integral. This can be seen by looking at the η-dependence of the R-invariants appearing

in the P factors, defined by the sum over paths in the tree diagram figure 4. The outer

most R-invariant in each P factor is the same as in PNMHV (which we have already seen is

inert with this choice of orientation) and the other R-invariants have at least as restrictive

a range of η-dependence. This is just as we saw in the the case of the NNMHV amplitudes.

Once we have seen that the P-factors are all inert, the Grassmann integrals in (5.11)

are simple to do. The integration in the first term is the same as in the terms we called

A in the NMHV and NNMHV cases, it provides the usual AMHV
n factor and leaves the

P-factor unchanged. In the second term, the Grassmann integration is the same as in the

term we called B in the NMHV case or those we called B1 and B2 in the NNMHV case.

We obtain a factor of Rn;2i for each i as well as a factor of AMHV
n . Thus we have

Pn = Pn−1(P̂ , 3, . . . , n̄) +

n−1
∑

i=4

Rn;2,iPi(2, . . . ,−P̂i, 1̂)Pn−i+2(P̂i, i, . . . , n̄). (5.12)

As we saw already in the NMHV and NNMHV cases, the spinors 〈P̂ | appearing in the

R-invariants in the first term on the r.h.s. (the linear term) can be replaced by 〈2| due to

the three-point kinematics. This term then gives an expression which is almost identical to

the sum over paths in figure 4, except that the lower limit of the outermost sum is 3 and

not 2. Thus to prove the inductive step we need to show that the second term in (5.12) (the

quadratic term) gives the missing contributions, i.e. those paths of length one or greater

where the outermost lower summation variable is fixed to be 2.

In fact the contributions we are looking for can also be represented diagrammatically as

a sum over paths in a tree diagram very similar to the tree in figure 4. The tree representing

the missing paths differs from figure 4 in that the root vertex is missing and the label a1

is fixed to the value 2. We must remember that the label b1 is still summed over the range

4 ≤ b1 ≤ n − 1. We give the relevant tree diagram in figure 7.
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12 i

c1d1

c2d2

i 2; a2b2

d1c1; c2d2i 2; a3b3i 2; b2a2; a3b3

n − 1

n − 1

3

a2 + 1 c1 + 1i

i
i

b2 d1

×

Figure 8. Graphical representation of the quadratic term Rn;2 iPi(2, . . . ,−P̂i, 1̂) Pn−i+2

(P̂i, i, . . . , n̄) in equation (5.12). The left tree corresponds to the first two factors

Rn;2 iPi(2, . . . ,−P̂i, 1̂), while the right tree corresponds to the final factor Pn−i+2(P̂i, i, . . . , n̄). As

indicated in the text, after summing over i the first tree is almost what is needed to complete the

linear term to Pn. The missing pieces come from the right factor which can be adjoined to the

left by inserting it everywhere there is a line drawn in bold so that these lines then all lead to a

descendant vertex with labels c2, d2. Since the c and d labels are all dummy variables they can then

be exchanged for the suitable a and b labels by a change of notation.

So let us examine the quadratic term in (5.12). We begin by looking at the summand.

The first two factors Rn;2 iPi(2, . . . ,−P̂ , 1̂) taken together reproduce a sum over vertical

paths in a tree very similar to the one in figure 4. The relevant tree diagram is shown in

the left half of figure 8 (ignoring the solid lines for now). Let us describe the differences

between this tree and the one of figure 4. Firstly, the root vertex corresponds to Rn;2 i

instead of 1, so the first term in the sum over paths, 1, is absent. Secondly, the top R-

invariant Rn;2 i has its labels fixed to be 2 and i. Thirdly, all descendant vertices have at

least two pairs of labels due to the fact that the last leg of the argument of Pi(2, . . . ,−P̂ , 1̂)

is 1̂ and not n. As we saw in equations (4.19) and (4.20) this results in the replacement

〈n| → 〈n|xnixi2 which induces extra labels on the R-invariants. Finally, the right-most

vertex of each descendant cluster has two pairs of indices. Thus the right superscripts

associated to these vertices are not 0, as was the case for the tree in figure 4. Instead these

superscripts are all 2 i which is obtained by deleting the final pair and reversing the order

of the remaining pair i 2.

Now let us consider the sum over vertical paths in the tree diagram we have just

described. There is one path of length 0, corresponding to the contribution,

Rn;2i . (5.13)

There is one path of length one which gives

Rn;2i

∑

3≤a2,b2≤i

R0;2i
n;i2;a2b2

. (5.14)

There are two paths of length two which give the following two contributions,

Rn;2i

∑

3≤a2,b2≤i

R0;2i
n;i2;a2b2

[

∑

a2+1≤a3,b3

R0;i2a2b2
n;i2;b2a2;a3b3

+
∑

b2≤a3,b3≤i

Ri2a2b2;2i
n;i2;a3b3

]

. (5.15)
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Continuing, we have five paths of length three and so on. Since we consider the sum over

paths, we have to add up all these terms.

Now we consider the third factor Pn−i+2(P̂i, i, . . . , n̄) in the summand of the quadratic

term in (5.12). This gives us the sum over paths in the tree shown in the right half of

figure 8. This tree is again similar to the tree shown in figure 4. There are two differences

between this tree and the one of figure 4. Firstly, the outermost lower summation limit is

i and not 2. Secondly, since the first argument of Pn−i+2(P̂i, i, . . . , n̄) is P̂i and not i − 1,

there will be a non-trivial left superscript associated to the first descendant vertex. This

is precisely the same effect that we saw in equations (4.13) and (4.14). The corresponding

superscript is 2 i so that the first descendant vertex corresponds to R2i;0
n;c1d1

.

Writing out the terms in the sum over paths in the tree corresponding to

Pn−i+2(P̂ , i, . . . , n̄) we find from paths of length 0,

1 , (5.16)

from paths of length one,
∑

i≤c1,d1≤n−1

R2i;0
n;c1d1

, (5.17)

from paths of length two,

∑

i≤c1,d1≤n−1

R2i;0
n;c1d1

[

∑

c1+1≤c2,d2≤d1

R0;c1d1

n;d1c1;c2d2
+

∑

d1≤c2,d2≤n−1

Rc1d1;0
n;c2d2

]

, (5.18)

and so on.

Thus the left half of figure 8 gave us the sum of (5.13), (5.14), (5.15) and longer

paths. The right half of figure 4 gave us the sum of (5.16), (5.17), (5.18) and longer paths.

If we consider the product of the expressions obtained from the two trees we see that it

can be written,

Rn;2i

+Rn;2i

[

∑

3≤a2,b2≤i

R0;2i
n;i2;a2b2

+
∑

i≤c1,d1≤n−1

R2i;0
n;c1d1

]

+Rn;2i

[

∑

3≤a2,b2≤i

R0;2i
n;i2;a2b2

[

∑

a2+1≤a3,b3

R0;i2a2b2
n;i2;b2a2;a3b3

+
∑

b2≤a3,b3≤i

Ri2a2b2;2i
n;i2;a3b3

+
∑

i≤c1,d1≤n−1

R2i;0
n;c1d1

]

+
∑

i≤c1,d1≤n−1

R2i;0
n;c1d1

[

∑

c1+1≤c2,d2≤d1

R0;c1d1

n;d1c1;c2d2
+

∑

d1≤c2,d2≤n−1

Rc1d1;0
n;c2d2

]

]

+ longer . (5.19)

Remembering that we need to sum over i in the quadratic term on the r.h.s. of (5.12), we

find precisely the terms we are looking for. To make the identification completely explicit

we can perform the changes of labels c1, d1 → a2, b2 in the second line, c1, d1 → a3, b3 in

the third line and c1, d1 → a2, b2, c2, d2 → a3, b3 in the fourth line, and finally rename the

summation variable i as b1. This analysis can also be seen diagrammatically. If one glues

the tree from the right half of figure 8 to that from the left half everywhere there is a line
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drawn in bold and performs the corresponding changes of labels, one obtains exactly the

tree diagram of figure 7.

Thus finally we arrive at the fact that the sum of the linear term and quadratic

term on the r.h.s. reproduces the sum over vertical paths in figure 4. This completes

the inductive step of the proof. It remains to note that the sum over paths in figure 4

coincides with the first few amplitudes as we have seen by considering NMHV and

NNMHV amplitudes. Therefore we conclude that formula (5.5) does indeed produce the

full tree-level super-amplitude.

6 Symmetries of the amplitudes

Tree amplitudes in N = 4 SYM are expected to have many symmetries. First of all, N = 4

SYM is a superconformal field theory, so the amplitudes should exhibit this symmetry

in their functional forms. The MHV super-amplitudes were shown to be annihilated by

all generators of the conventional superconformal algebra in [6]. The amplitudes we have

constructed in this paper are manifestly invariant under all generators of the conventional

superconformal algebra3 except for the superconformal symmetries s, s̄, k.

In addition to the conventional superconformal symmetry, it was conjectured in [1] that

the tree-level super-amplitudes should also exhibit dual superconformal symmetry. As far

as tree-level super-amplitudes are concerned, the conjecture of [1] states that they should be

covariant under dual conformal transformations K and the chiral superconformal transfor-

mations S, while they are invariant under P,Q, Q̄, S̄. They also have the obvious property

that the dual dilatation weight and central charge are equal to n, the number of particles.

The generators of the two different realisations of the superconformal algebra are not all

independent. As discussed in [1] the odd generator q̄ coincides with S̄, while s̄ coincides with

Q̄. The same correspondence was observed in [2, 3] after performing a fermionic T-duality

in the string sigma model. The explicit form of all generators is summarised in appendix B.

In [18] the dual conformal covariance of the tree-level super-amplitudes was verified

recursively using the supersymmetric recursion relations. We can indeed see this symmetry

in the explicit form of the solution we have presented. All quantities Rn;a1b1;...;ambm;st are

dual conformal invariants, as can be quickly verified by counting the conformal weights

of the numerator and denominator. For tree-level amplitudes, this is sufficient to show

dual superconformal covariance, as claimed in [18], since the conventional superconformal

invariance s̄A = 0 of the amplitude should be unbroken. In other words if we know

that s̄A = 0 then we have Q̄A = 0, and together with covariance under dual inversions

this is sufficient to derive all the expected properties under the full dual superconformal

algebra. Further we remark that if all super-amplitudes obey s̄A = 0 then they also obey

sA = 0, since we could alternatively have performed the entire analysis in the anti-chiral

(η̄) representation for the gluon supermultiplet. Thus showing s̄-invariance is sufficient to

derive invariance under s and therefore under k = {s, s̄}.
In general, showing the conventional superconformal invariance of the tree-level ampli-

tudes is a non-trivial task (see e.g. [6]). Here we will explicitly show that expression (5.5)

3Following the conventions of [1] we will use lower case characters to denote the conventional supercon-

formal generators and upper case ones for the dual superconformal generators.
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does indeed obey this symmetry. As we have seen, the only property of the super-amplitude

which remains to be explicitly verified is its behaviour under the s̄A
α̇ or Q̄A

α̇ supersymmetry.

We recall the explicit form of Q̄A
α̇ ,

Q
A
α̇ =

∑

i

[θαA
i ∂iαα̇ + ηA

i ∂iα̇] . (6.1)

The invariance of the NMHV super-amplitude (3.17) was shown in [1]. It follows from the

fact that4

Q̄A
α̇ δ(4)(p) δ(8)(q)Rn;a1b1 = 0 . (6.2)

Following [1], we can simplify calculations such as (6.2) by noting that the super-

amplitudes are invariant under S̄α̇A and QαA. Since translations, Lorentz rotations

and the combination D − C are also symmetries of the super-amplitudes, we have (see

appendix B)
{

Q̄α̇A, S̄
β̇B

}

An =
{

Q̄α̇A, QαB

}

An = 0. This allows us to compute the

variation Q̄A
α̇An in a frame obtained by a combined shift using S̄α̇A and QαA. In particular,

we can choose the shift parameters such that θa1 = θb1 = 0 [1].

Let us proceed with the NNMHV super-amplitude (4.9). We first consider

terms in (4.9) which are not affected by boundary effects, i.e. Rn;a1b1Rn;a2b2 and

Rn;a1b1Rn;b1a1;a2b2 . From (6.2) we immediately see that the terms with Rn;a1b1Rn;a2b2 are

invariant under Q̄A
α̇ . Let us now consider the variation

Q̄A
α̇ δ(4)(p) δ(8)(q)Rn;a1b1Rn;b1a1;a2b2 = δ(4)(p) δ(8)(q)Rn;a1b1 Q̄A

α̇ Rn;b1a1;a2b2 . (6.3)

Following [1], we can choose a fixed frame in which θa2 = θb2 = 0. In this frame, (4.2)

simplifies to

ΞA
n;b1a1;a2b2

= x2
a2b2

〈ξθA
a1
〉 (6.4)

and

Rn;b1a1;a2b2 =
1

4!
ǫABCD

〈ξ θA
a1
〉〈ξ θB

a1
〉〈ξ θC

a1
〉〈ξ θD

a1
〉

〈ξ I1〉〈ξ I2〉〈ξ I3〉〈ξ I4〉
(x2

a2b2
)3〈a2 a2 − 1〉〈b2 b2 − 1〉 . (6.5)

Here

|I1〉=xa1a2xa2b2|b2〉, |I2〉=xa1a2xa2b2 |b2−1〉, |I3〉=xa1b2xb2a2 |a2〉, |I4〉=xa1b2xb2a2 |a2−1〉
(6.6)

and

〈ξ| = 〈n|xnb1xb1a1 . (6.7)

Further, when computing the Q̄A α̇-variation of Rn;b1a1;a2b2 in (6.5) we can drop all terms

in (6.1) except θA
n α∂αα̇

n + θA
a1 α∂αα̇

a1
+ θA

b1 α∂αα̇
b1

. The reason is that there is no explicit

dependence on λ̃ in Rn;b1a1;a2b2 , and that θA
a2 α∂αα̇

a2
= θA

b2 α∂αα̇
b2

= 0 in the fixed frame. Let

λ̃α̇
J be an arbitrary projection. It can be easily seen that in the fixed frame, [JQ̄E ] acts

trivially on Ii in (6.5), because e.g.

〈ξ[JQ̄E ]I1〉 = 〈ξ θE
a1
〉[J |xa2b2 |b2〉 (6.8)

4We omit the factor 〈12〉 . . . 〈n1〉 in the denominator of the superamplitude since this is obviously in-

variant under the action of Q.
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is annihilated by the Grassmann delta function in the numerator of (6.5). Thus when

acting with [JQ̄E ] on (6.5), only 〈ξ| transforms. After using the cyclic identity for spinors

we easily obtain

[JQ̄E ]Rn;b1a1;a2b2 =
1

4!
ǫABCD

χA〈ξθB
a1
〉〈ξθC

a1
〉〈ξθD

a1
〉

〈ξI1〉〈ξI2〉〈ξI3〉〈ξI4〉
×
[

〈n|xnb1xb1a1 |θE
a1n〉+〈n|xna1xa1b1 |θE

b1n〉
]

,

(6.9)

where the explicit expression for χA is inessential to our argument. From (6.9) we see that

Rn;b1a1;a2b2 is not dual superconformally invariant. However, in (4.9), it always appears

multiplied by the invariant Rn;a1b1 . In this case, the Grassmann delta function in Rn;a1b1

makes the variation (6.9) vanish, and therefore Rn;a1b1Rn;b1a1;a2b2 is a dual superconformal

invariant. The boundary terms in the sums behave in a similar way. The replacement

spinors produce additional terms in the Q̄ variation which are annihilated by the presence

of the Grassmann factors.

We conclude that the NNMHV amplitudes are dual superconformally covariant. From

the discussion here and in section 5 it is easy to see that this property is true for all tree-level

amplitudes in N = 4 SYM. Indeed, one can repeat the argument above to ‘longer’ chains of

invariants that appear in equation (5.5). Take for example Rn;a1b1Rn;b1a1;a2b2Rn;b1a1;b2a2;a3b3

from (5.2). After fixing a frame where θa3 = θb3 = 0, we obtain an expression like (6.5) with

a different 〈ξ| = 〈n|xnb1xb1a1xa1b2xb2a2 |. Because of the linearity of [JQ̄E ] the calculation

of the variation of Rn;b1a1;b2a2;a3b3 is as above, except that now we obtain two contributions,

one of which vanishes thanks to Rn;a1b1 , and the other thanks to Rn;b1a1;a2b2 . The crucial

feature is that R’s with many indices share all first indices of their ‘predecessors’. This is

the case by construction for all terms in (5.5).

Therefore we have shown explicitly that the formula (5.5) for all tree-level amplitudes

in N = 4 SYM has all the expected properties under both conventional and dual super-

conformal symmetry.

7 Gluon scattering amplitudes from super-amplitudes

Here we wish to give some explanations on how gluon amplitudes can be extracted from

our solutions and how this can be implemented, for example on a computer.

Let us first stress that any component amplitudes for arbitrary particle or helicity

choice can be extracted from the super-amplitudes, see e.g. [1] for more explanations. Here

we focus on the particularly simple case of gluon amplitudes.

According to (2.2), to each negative helicity gluon at position j is associated a factor

of (ηj)
4 = η1

j η
2
j η

3
j η

4
j , and to each positive helicity gluon simply a factor of 1. Going from a

given super-amplitude to a gluon component amplitude therefore just amounts to extracting

specific prefactors in the η-expansion of the super-amplitude. An elementary example is

the relation (2.7) between the gluon MHV amplitude (2.1) and the super-amplitude (2.4).

A less trivial example is the split-helicity NMHV amplitude,

ANMHV
n = (ηn−2)

4 (ηn−1)
4 (ηn)4 A(1+, . . . , (n − 3)+, (n − 2)−, (n − 1)−, n−) + · · · , (7.1)
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We want to expand ANMHV
n in η and recover the desired split-helicity gluon amplitude.5 A

simple way to achieve this is to observe that the relation between NMHV super-amplitude

and the desired gluon component can be written as a Grassmann integral

A(1+, . . . , (n − 3)+, (n − 2)−, (n − 1)−, n−) =

∫

d4ηn−2

∫

d4ηn−1

∫

d4ηn ANMHV
n . (7.2)

In this paper we have already encountered many such Grassmann integrals and seen that

they are easy to do. We can always choose two arbitrary spinor projections of qA
α to rewrite

the δ(8)(qA
α ) of ANMHV

n as

δ(8)(qA
α ) = 〈n − 1n〉4 δ(4)

(

ηA
n−1 +

n−2
∑

i=1

〈in〉
〈n − 1n〉η

A
i

)

δ(4)

(

ηA
n +

n−2
∑

i=1

〈n − 1 i〉
〈n − 1n〉η

A
i

)

. (7.3)

This allows us to immediately carry out the d4ηn and d4ηn−1 integrals in (7.2). The

remaining terms in ANMHV
n are unaffected by this since they can be written in the form (3.8)

in which they are independent of ηn−1 and ηn. Hence we obtain

A(1+, . . . , (n − 3)+, (n − 2)−, (n − 1)−, n−) = δ(4)(p)
〈n − 1n〉4
〈12〉 . . . 〈n1〉

∫

d4ηn−2

∑

1<s,t<n

Rn;s,t ,

(7.4)

where the Ξn;s,t in Rn;s,t are written in the form (3.8). A further simplification occurs

because Rn;s,t only depends on ηn−2 if t = n − 1, see (3.8). Carrying out the remaining

Grassmann integration using the δ(4)(Ξn;s,n−1) in Rn;s,n−1 we obtain

A(1+, . . . , (n − 3)+, (n − 2)−, (n − 1)−, n−) =

− δ(4)(p)

〈12〉 . . . 〈n − 3n − 2〉〈n1〉
n−3
∑

s=2

〈n − 2|xn−1 sxsn|n〉3〈s s − 1〉
x2

s n−1x
2
s n[n − 1|xn−1,s|s〉 [n − 1|xn−1 s|s − 1〉 . (7.5)

This is in perfect agreement with formula (4.5) given in [34].

We can continue further and derive, for example, a formula for the split-helicity NN-

MHV amplitudes. Just as in the NMHV case, we can write all invariants so that they

do not depend on ηn or ηn−1. Then performing integrals with respect to these variables

just produces a factor of 〈n − 1n〉4 from the δ8(q) factor. The remaining integrals with

respect to ηn−2 and ηn−3 give nothing from the second term in (4.9). From the first term

in (4.9) we obtain two contributions, one where b1 = n − 1 and b2 = n − 2 and one where

b1 = b2 = n − 1. The final formula for the gluon amplitudes is

A(1+, . . . , (n − 4)+, (n − 3)−, (n − 2)−, (n − 1)−, n−) = δ(4)(p)(S1 + S2), (7.6)

where the two terms are given by

S1 =
〈n n − 1〉〈n − 1n − 2〉〈n − 2n − 3〉

∏n
i=1〈i i + 1〉

n−5
∑

a1=2

n−4
∑

a2=a1+1

N1

D1
, (7.7)

5Note that a Grassmann delta function is simply defined as a product, δ(4)(χA) =

1/4!ǫABCDχAχBχCχD.
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S2 =
〈n n − 1〉〈n − 1n − 2〉〈n − 2n − 3〉4

∏n
i=1〈i i + 1〉

n−4
∑

a1=2

n−3
∑

a2=a1+1

N2

D2
. (7.8)

Here the numerators and denominators of the summands are

N1 =〈a1 a1 − 1〉〈n|xna1xa1n−1|n − 2〉3〈a2 a2 − 1〉[n − 1|xn−1a1xa1a2xa2n−3|n − 3〉3, (7.9)

D1 =[n − 1|xn−1a1 |a1〉[n − 1|xn−1a1 |a1 − 1〉[n − 1|xn−1a1xa1a2xa2n−2|n − 2〉
× [n − 1|xn−1a1xa1n−2xn−2a2 |a2〉
× [n − 1|xn−1a1xa1n−2xn−2a2 |a2 − 1〉x2

a1n−1x
2
na1

x2
a2n−2, (7.10)

N2 =〈a1a1 − 1〉〈a2a2 − 1〉〈n|xna1xa1n−1xn−1a2xa2a1xa1n−1|n − 1]3, (7.11)

D2 =[n − 1|xn−1a1 |a1〉[n − 1|xn−1a1 |a1 − 1〉[n − 1|xn−1a1xa1a2xa2n−1|n − 2〉
× [n − 1|xn−1a2 |a2〉[n − 1|xn−1a2 |a2 − 1〉(x2

a1n−1)
3x2

a2n−1x
2
na1

. (7.12)

It is simple to check analytically that this formula correctly reproduces the six-point

MHV amplitude and the seven-point next-to-MHV amplitude. We have also checked nu-

merically that it coincides with the six terms given in [34] for the eight-point NNMHV

split-helicity gluon amplitude.

In more complicated situations one could for example first do some η integrations an-

alytically (e.g. using the δ(8)(q) which is present in all physical super-amplitudes because

of supersymmetry), and then implement the remaining integrations/expansions on a com-

puter. This can be easily programmed, keeping track of the overall sign (because the η’s are

anticommuting variables). The resulting spinor expressions can be evaluated numerically

using available packages, see e.g. [35].

8 Conclusions

The main result of our paper is formula (5.5) for all tree-level amplitudes in N = 4 SYM.

The formula contains all amplitudes with arbitrary total helicity (MHV,NMHV,. . . ,MHV).

It is given in terms of vertical paths of a particular rooted tree, shown in figure 4. This

extends previous solutions of the BCF recursion relations which applied only to the closed

subset of split-helicity gluon amplitudes [34]. Our solution is written in on-shell N = 4

superspace. It is built from dual superconformal invariants and so it manifestly exhibits

both conventional and dual superconformal symmetries.

Our expression contains as components all amplitudes for arbitrary external states

and helicities. We explained in section 7 that gluon components are particularly simple to

extract, since they can be obtained from the super-amplitudes by carrying out Grassmann

integrations. A crucial simplifying feature is that (5.5) is built from sums over products of

Grassmann delta functions, which can be used to perform the aforementioned integrations.

We expect that it will be possible to obtain compact expressions for previously unknown

gluon components following the example in section 7.

We expect our results to be relevant for N = 8 supergravity as well, since tree-level

amplitudes in the latter theory can be obtained from those in N = 4 SYM through

the KLT relations [36]. Furthermore the methods employed here could also be directly

applied to solving recursion relations for supergravity tree-level amplitudes [37]. It would

also be interesting to see if our formula could shed light on the relation among tree-level

amplitudes described in [38].
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A Collinear limit of the super-amplitudes

Here we check that our amplitudes have the correct collinear limit as two particles become

almost collinear [39]. Consider two neighbouring particles at points a and b = a + 1 that

become collinear such that

pa = zP , pb = (1 − z)P , (A.1)

then an n-gluon tree amplitude is expected to behave as

An
a||b−→

∑

λ=±

Splittree−λ (aλa , bλb)An(. . . , (a + b)λ , . . .) , (A.2)

where Splittree−λ are certain helicity-dependent splitting functions, see [39]. The non-

vanishing splitting functions diverge as 1/
√

sab in the collinear limit sab = (pa + pb)
2 → 0.

In the collinear limit, the spinors corresponding to the momenta pa and pb become

λa → √
zλP , λ̃a → √

zλ̃P , λb →
√

1 − zλP , λ̃b →
√

1 − zλ̃P . (A.3)

In the supersymmetric case, to be consistent with (A.3) we also define

ηa → √
zηP , ηb →

√
1 − zηP . (A.4)

By inspecting the collinear limit for the MHV super-amplitudes (2.4), we expect the

following collinear limit for super-amplitudes at tree level,

An(. . . , a, b, . . .)
a||b−→ 1

√

z(1 − z)〈ab〉
An−1(. . . , P , . . .) . (A.5)

Let us see if relation (A.5) holds for the NMHV amplitudes (2.8) as well. We need to

analyse the behaviour of the invariants Rn;s,t in the limit. Because of cyclic symmetry of

the super-amplitude, we can consider the a = n − 1, b = n without loss of generality. This

is advantageous because then the invariants Rn;s,t are affected by the collinear limit only

through λn =
√

1 − zλP . Looking at (3.5) we see that

Rn;s,t
n−1||n−→ RP ;s,t . (A.6)

We also observe that

Rn;s,n−1
n−1||n−→ RP ;s,n−1 ∝ 〈n − 1n〉2 → 0 . (A.7)

– 27 –



J
H
E
P
0
4
(
2
0
0
9
)
0
1
8

Using (A.6) and (A.7) on (2.8) we see that indeed

ANMHV
n (1, . . . , n − 1, n)

n−1||n−→ 1
√

z(1 − z)〈n − 1n〉
ANMHV

n−1 (1, . . . , n − 2, P ) . (A.8)

Going to NNMHV amplitudes (4.8), (4.9), we see that the behaviour of the ‘longer’ in-

variants like Rn;u,vRn;v,u;s,t under the collinear limit where particles n − 1 and n become

collinear is completely analogous to the NMHV case, they turn into RP ;u,vRP ;v,u;s,t. It

is then obvious that (4.8), (4.9) obeys the collinear limit (A.5). This observation can be

immediately generalised to arbitrary non-MHV amplitudes. The crucial feature is that all

invariants share the same first label n, which is simply replaced by P in the collinear limit.

Finally we remark that the divergent prefactor in (A.5) originates entirely from the

MHV prefactor AMHV
n , and that Pn (defined in (2.5)) has a finite collinear limit.

B Conventional and dual superconformal generators

In this appendix we give the conventional and dual representations of the superconformal al-

gebra. We begin by listing the commutation relations of the algebra u(2, 2|4). The Lorentz

generators Mαβ, M
α̇β̇

and the su(4) generators RA
B act canonically on the remaining

generators carrying Lorentz or su(4) indices. The dilatation D and hypercharge B act via

[D, J] = dim(J), [B, J] = hyp(J). (B.1)

The non-zero dimensions and hypercharges of the various generators are

dim(P) = 1, dim(Q) = dim(Q) =
1

2
, dim(S) = dim(S) = −1

2

dim(K) = −1, hyp(Q) = hyp(S) =
1

2
, hyp(Q) = hyp(S) = −1

2
. (B.2)

The remaining non-trivial commutation relations are,

{QαA, Q
B
α̇ } = δB

APαα̇, {SA
α , Sα̇B} = δA

BKαα̇,

[Pαα̇, SβA] = δβ
αQ

A
α̇ , [Kαα̇, Qβ

A] = δβ
αSα̇A,

[Pαα̇, S
β̇
A] = δβ̇

α̇QαA, [Kαα̇, Q
β̇A

] = δβ̇
α̇SA

α ,

[Kαα̇, Pββ̇ ] = δβ
αδβ̇

α̇D + Mα
βδβ̇

α̇ + Mα̇
β̇δβ

α,

{Qα
A, SB

β } = Mα
βδB

A + δα
β RB

A +
1

2
δα
β δB

A (D + C),

{Qα̇A
, Sβ̇B} = M

α̇

β̇δA
B − δα̇

β̇
RA

B +
1

2
δα̇
β̇
δA
B(D − C). (B.3)

Note that in writing the algebra relations we are obliged to choose the su(4) chirality of

the odd generators. The relations above are valid directly for the dual superconformal

generators. For the conventional realisation of the algebra, one should simply swap all

su(4) chiralities appearing in the commutation relations. We now give the generators in

both the conventional and dual representations of the superconformal algebra. We will

use the following shorthand notation:

∂iαα̇ =
∂

∂xαα̇
i

, ∂iαA =
∂

∂θαA
i

, ∂iα =
∂

∂λα
i

, ∂iα̇ =
∂

∂λ̃α̇
i

, ∂iA =
∂

∂ηA
i

. (B.4)
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We first give the generators of the conventional superconformal symmetry, using lower

case characters to distinguish these generators from the dual superconformal generators

which follow afterwards.

pα̇α =
∑

i

λ̃α̇
i λα

i , kαα̇ =
∑

i

∂iα∂iα̇,

m
α̇β̇

=
∑

i

λ̃i(α̇∂
iβ̇), mαβ =

∑

i

λi(α∂iβ),

d =
∑

i

[

1

2
λα

i ∂iα +
1

2
λ̃α̇

i ∂iα̇ + 1

]

, rA
B =

∑

i

[

− ηA
i ∂iB +

1

4
δA
BηC

i ∂iC

]

,

qαA =
∑

i

λα
i ηA

i , q̄α̇
A =

∑

i

λ̃α̇
i ∂iA,

sαA =
∑

i

∂iα∂iA, s̄A
α̇ =

∑

i

ηA
i ∂iα̇.

c =
∑

i

[

1 +
1

2
λα

i ∂iα − 1

2
λ̃α̇

i ∂iα̇ − 1

2
ηA

i ∂iA

]

(B.5)

We can construct the generators of dual superconformal transformations by starting with

the standard chiral representation and extending the generators so that they commute

with the constraints,

(xi − xi+1)αα̇ − λi α λ̃i α̇ = 0, (θi − θi+1)
A
α − λiαηA

i = 0. (B.6)

By construction they preserve the surface defined by these constraints, which is where the

amplitude has support. The generators are

Pαα̇ =
∑

i

∂iαα̇, (B.7)

QαA =
∑

i

∂iαA, (B.8)

Q
A
α̇ =

∑

i

[θαA
i ∂iαα̇ + ηA

i ∂iα̇], (B.9)

Mαβ =
∑

i

[xi(α
α̇∂iβ)α̇ + θA

i(α∂iβ)A + λi(α∂iβ)], (B.10)

M α̇β̇ =
∑

i

[xi(α̇
α∂iβ̇)α + λ̃i(α̇∂iβ̇)], (B.11)

RA
B =

∑

i

[θαA
i ∂iαB + ηA

i ∂iB − 1

4
δA
BθαC

i ∂iαC − 1

4
δA
BηC

i ∂iC ], (B.12)

D =
∑

i

[−xα̇α
i ∂iαα̇ − 1

2
θαA
i ∂iαA − 1

2
λα

i ∂iα − 1

2
λ̃α̇

i ∂iα̇], (B.13)

C =
∑

i

[−1

2
λα

i ∂iα +
1

2
λ̃α̇

i ∂iα̇ +
1

2
ηA

i ∂iA], (B.14)

SA
α =

∑

i

[−θB
iαθβA

i ∂iβB+xiα
β̇θβA

i ∂
ββ̇

+λiαθγA
i ∂iγ +xi+1 α

β̇ηA
i ∂

iβ̇
−θB

i+1 αηA
i ∂iB ], (B.15)
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Sα̇A =
∑

i

[xiα̇
β∂iβA + λ̃iα̇∂iA], (B.16)

Kαα̇ =
∑

i

[xiα
β̇xiα̇

β∂
iββ̇

+xiα̇
βθB

iα∂iβB+xiα̇
βλiα∂iβ+xi+1 α

β̇λ̃iα̇∂
iβ̇

+λ̃iα̇θB
i+1α∂iB]. (B.17)

We also have the hypercharge B,

B =
∑

i

[−1

2
θαA
i ∂iαA − 1

2
λα

i ∂iα +
1

2
λ̃α̇

i ∂iα̇] (B.18)

Note that if we restrict the dual generators Q̄, S̄ to the on-shell superspace they become

identical to the conventional generators s̄, q̄.
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